

Adds Performance, Life and Value to these Automotive Products.

Powertrain ABS Alternator Caliper Clutch Condenser CV Joint Differential Drum Brakes Fuel System Idler Pulley Idle Air Actuator Master Cylinder Shifters Slip Yokes Supercharger Throttle Plate Transfer Case **U** Joints Water Pump Wheel Bearings

Switches Airbag Cutoff Climate Control Dash panel Dimmer **Dual Stalk** Hazard Headlamp Ignition Multifunction Power Lock Power Mirror Power Seat Reading Lamp Rear Defrost TRS Trunk Release Turn Signal Window Lift

Steering/Suspension

Ball Joint Idler Arm Intermediate Shaft Manual Steering Pitman Arm Power Steering Gear Rack and Pinion Steering Shaft Bearings Shock Absorbers Stabilizer Bushings Steering Yoke Strut Bearing Tie Rods Tilt and Telescope

Sensors

Exhaust Gas Recirculating Fuel Level Oxygen Oil Pressure **Pedal Position** Power Mirror Position Seat Position Steering Position Suspension Position Temperature Throttle Position Transmission Speed Wheel Speed

Actuators

ABS Air Bag Clock Spring Climate Control Cup Holders Door Lock **Exterior Mirror Grab Handles** Hinges **Key Cylinders** Latches Pedals Power Sliding Door **PRNDL Seat Position** Springs Vent Controls Visors

Window Lift

Motors

ABS Antenna Cooling Fan Electric Brake Electric Steering ETC Fuel Pump **HVAC Blower** Power Mirror Seat Starter Sunroof Suspension Trunk Pulldown Window Wiper

Cables

Brake Climate Control Clutch Exterior Mirror Fuel Door Release Hood Release Parking Brake Seat Recline Speedometer Sunroof Throttle Transmission Trunk Release Window Regulator

Connectors

ABS Airbaa Alternator Battery Cooling Fan ECM/ECU **EGR** Firewall Fuel Sender Headlamp/Tail Lamp Mass Air Flow Multifunction Switch 02 Speakers Starter **TPS** TRS Wheel Speed Sensor

SYNTHETIC OILS COMMONLY USED AT NYE **Synthetic Oils** Temp Range (°C) **Key Characteristics/Typical Applications** Compared to PAO and diesters, offer improved hydrolytic, thermal, and oxidative stability. Good **Alkylated Naphthalenes (AN)** -30 to 180 blendstock for polyalphaolefins requiring high stability under extreme conditions. Highly specialized fluid that combines the low vapor pressure of a PFPE with the lubricity and Pennzane® from Shell (MAC) -45 to 125 film strength of a PAO. Typically used in aerospace and critical vacuum applications. Extremely stable, nonflammable, chemically inert, low vapor pressure fluids. Used in extreme Perfluoropolyethers (PFPE) -90 to 250 environments and to avoid plastic and elastomer compatibility problems. Stable, lubricious fluids compatible with most plastics and elastomers. A drop-in replacement Polyalphaolefins (PAO) -60 to 125 for petroleum, it's used in countless applications in many industries. Good load-carrying ability, compatible with most elastomers, non-carbonizing. Often used in **Polyglycols** -40 to 125 arcing switches. Radiation, chemical, and acid-resistant fluids. Traditionally used for noble-metal connectors and Polyphenylethers (PPE) +10 to 250 high-temperature mechanical components. Stable fluids with good wetting characteristics. Commonly used with plastic gears, control **Silicones** -70 to 200 cables, and seals. Excellent wear resistance, stable, affinity for metals, handles heavy loads. Great for loaded

COMPATIBLETY OF		_			_	_		Plas	tics										E	last	ome	r			[Sol	vent			
COMPATIBILITY OF SYNTHETIC BASE OILS G Good F Fair P Poor S Soluble W Weakly soluble V Varies with grade Insoluble	Acetal (POM)	ABS	Phenolic (PF)	Polyamide-imide (PAI)	Polyamide (nylon) (PA)	Polycarbonate (PC)	Polyester	Polyetherimide	Polyethylene (PE)	Polyimide (TPI)	Polyphenylene oxide (PPO)	Polystyrene	Polysulfone (PSU)	PTFE	Polyvinyl chloride (PVC)	Terephthalate (PBT)	Buna S	Butyl	EPDM, EPR	Fluoroelastomer	Natural Rubber	Neoprene	Nitrile	Silicone		Water	Water plus detergent	Isopropanol	Methanol	Mineral Spirits	Fluoroalkane	Hydrofluorocarbon	Hydrofluoroether
Synthetic Hydrocarbon Includes: polyalphaolefin (PAO) Viscosity Index (VI) = 125-250	G	G	G	G	G	G	G	G	F	G	G	F	G	G	F	G	Р	Р	Р	G	Р	G	G	F		I	W	1	I	S	ı	I	ı
Polyglycol Polyether Viscosity Index (VI) = 160-220	G	Р	G	G	G	Р	Р	G	F	G	Р	G	Р	G	Р	G	Р	Р	G	G	Р	Р	F	G		٧	w	٧	V	S	ı	ı	ı
Ester Diester, polyolester Viscosity Index (VI) = 120-150	G	Р	G	G	G	Р	Р	G	F	G	Р	Р	Р	G	Р	G	Р	Р	F	G	Р	Р	F	F		ı	W	1	ı	S	ı	I	ı
Silicone Dimethyl-, phenyl-, halogenated Viscosity Index (VI) = 200-650	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	Р		I	W	1	ı	S	ı	I	ı
Multiplyalkylated Cyclopentane Pennzane from Shell Viscosity Index (VI) = 135	G	G	G	G	G	G	G	G	F	G	G	F	G	G	F	G	Р	Р	Р	G	Р	G	G	F		I	W	1	ı	S	ı	I	ı
Perfluoropolyether PFPE Viscosity Index (VI) = 100-350	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G		ı	w	ı	I	ı	S	٧	V
Polyphenylether PPE Viscosity Index (VI) = 40-60	G	Р	G	G	G	Р	Р	G	F	G	Р	Р	Р	G	Р	G	Р	Р	F	G	Р	Р	F	F		I	w	1	ı	S	ı	I	1

GREASE GELLANTS COMMONLY USED AT NYE									
Gellants are selected for their water and salt-water resistance, thermal stability, thickening efficiency, lubricity, and shear stabulity.									
Organic Soaps	Organic Non-Soaps								
Lithium	Urea								
Lithium Complex	PTFE								
Sodium	Inorganic								
Sodium Complex	Bentonite Clay								
Calcium	Silica								
Calcium Complex	Hydrophobic Silica								

GREASE STIFFNESS ANALOGS									
NLGI Grade	Penetration (worked, 60x)	Analog (unworked)							
000	445 - 475	Ketchup							
00	400 - 430	Applesauce							
0	355 - 385	Brown mustard							
1	310 - 340	Tomato paste							
2	265 - 295	Peanut butter							
3	220 - 250	Veg. shortening							
4	175 - 205	Frozen yogurt							
5	130 - 160	Smooth paté							
6	85 - 115	Cheese spread							

LUBRICANT ADDITIVES COMMONLY USED AT NYE

Metal Oxide

Aluminum Complex

Additive Type	Capabilities
Antioxidant	Prolongs life of base oil
Antiwear (EP)	Chemically active protection of loaded metal surfaces
Antirust	Slows rusting of iron alloys
Anticorrosion	Slows corrosion of non-noble metals
Filler	Thermal/electrical conductivity, special physical properties
Fortifier (EP)	Solids burnish into loaded surface under extreme pressures
Lubricity	Reduces coefficient of friction, starting torque or stick/slip
VI Modifier	Reduces rate of change of viscosity with temperature
Pour Point	Improves lower temperature limit
Dye	Visual/UV markers as inspection/assembly aids

OF COMMON FLUIDS										
Material										
Gum Rubber										
oum nubber										
Honey										
Castor Oil										
SAE 10 Motor Oil										
Milk										
Water										

Acetone

KINEMATIC VISCOSITY

.40

CALCULATING THE APPROXIMATE UNIT COST OF SYNTHETIC GREASE IN U.S. DOLLARS

	Amou Grease Pe (dia. in	r Device	Volume (cc)	lbs./100,l Low Density (1gm/cc)	000 Units High Density (2gm/cc)	Grease Cost Per Device LD@\$10/lb.					
	•	1	0.0003	0.066	0.13	\$0.000006	\$0.00013				
	•	2	0.0021	0.46	0.93	\$0.00005	\$0.0009				
	•	3	0.007	1.54	3.09	\$0.00015	\$0.003				
		5	0.033	7.3	14.6	\$0.0007	\$0.015				
(10	0.26	57.3	114.6	\$0.006	\$0.11				

Synthetic Esters

-65 to 150